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We consider the effects of noise on a model of epidemic outbreaks, where the outbreaks appear randomly.
Using a constructive transition approach that predicts large outbreaks prior to their occurrence, we derive an
adaptive control scheme that prevents large outbreaks from occurring. The theory is applicable to a wide range
of stochastic processes with underlying deterministic structure.

DOI: 10.1103/PhysRevE.70.046220 PACS number(s): 05.45.Tp, 87.19.Xx, 87.23.Ge

I. INTRODUCTION noise. The techniques introduced here may also be applied to

Recently, there has been much research of steady state general stochastic nonautonomous systems of the form
epidemics in random populations [1] and their control [2]. dx
Nonequilibrium diseases, in contrast, are those diseases ex- - = G(x, t) + 7(t), (1)
hibiting outbreaks that fluctuate in time. Childhood [3,4] and dt

tropical diseases [5,6] are a few examples of outbreaks hav- where G(x, t)= G(x, t+ 1), and the noise is added periodically
ing strong annual oscillations with random amplitude. In with the period of drive, i.e.,
modeling the annual incidence of infections, random compo-
nents from the environment and/or populations play a sig- 7(t) = iA(t-n),n = 1,2,..., (2)
nificant role [7,8]. While excellent data from seasonally fluc-tuatng isesesillutrae sron anual scilatons~th A is the Dirac delta function, and 7/ is now a discrete ran-tuating diseases illustrate strong annual oscillations w ith do vai b e Th f rm f Eq (1 al ws u to c n d rt erandm pak utbeak intheinfetios 1,9] moelsand dom variable. The form of Eq. (1) allows us to consider theran dom peak outbreaks in the infections [4,9], m odels and dy a i s s a d sc e -t m co t nly p rub d t ch t c
data analysis reveal that outbreaks stem from stochastic per- dynamica s rte -e
turbations in either population or epidemic parameters, mak- dynamical system.
ing deterministic prediction difficult. II. A STOCHASTIC EPIDEMIC MODEL

Predictability of seasonally driven diseases that are sto-
chastic is necessary for the application of methods to sup- A standard system used to study and predict the stochastic
press future outbreaks. Many vaccine schemes are available dynamics of disease epidemics is based on a simplified re-
for equilibrium diseases [3,10], but in the case of nonequi- duced version of the well-known SEIR (defined below) com-
librium outbreaks, current methods may enhance outbreaks partmental model [7,9,16], known as the modified SI model
or fail to achieve their goals [11,12]. (Similar problems arise [17]. In deterministic settings, the system has been exploited
in the large fluctuation theory of stochastic dynamical sys- to model single and coupled patch populations [18], as well
tems [13].) Other methods pulse the population without sam- as testing vaccine strategies [14,19]. Assume that the popu-
pling for prediction [14], or they rely on reducing spread via lation is sufficiently large so that the various subgroups are
mean threshold reduction [3]. To address the problem of sup- assumed to be continuous. The population dynamics is de-
pressing outbreaks in stochastic epidemics, we apply a math- scribed by susceptible S(t); exposed, but not yet infectious,
ematical method [15] to a stochastic model to predict out- E(t); infective I(t). The recovered R(t) class in the model can
breaks before they occur, and then adapt a vaccine strategy be derived from model results since S+E+I+R =I [17].
which prevents the outbreak from occurring. The theory ex- Seasonality is input into the model via the contact rate,
ploits a transition probability description from small ampli- /3(t), so we let fl(t)=,8 0(1 + 8 cos 2irt), where 0 -_ 8< 1.
tude incidence to outbreak dynamics, and generates a region Other parameters used to quantify the dynamics are a scep-
of high probability transport of the most sensitive regions to tible input rate A (which includes the birth rate, as well as a
stochastic effects. Moreover, it allows us to monitor regions possible fixed vaccine control), the mean latent period, a - ,
of stochastic dynamics that have a high probability of pre- and the infectious period, y- 1 . The full deterministic rate
ceding a large outbreak, which in turn leads to a design of a equations are given by
vaccine control strategy to suppress outbreaks. We thus argue
a general simple, but effective, control technique that takes dS(t) -A[I + h(t)] - 8(t)SI-AS,
advantage of complicated interactions of determinism and dt
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dE(t) 0.01 ,=- = (t)SI- aE - E,
dt 0.008

WI(t) () 8 0.006 S

- = aE- yI- pJ, 0
I 0.002

R(t) = 1 - [S(t) + E(t) +I(t)], 
0.0

where h(t) is a small perturbation used for vaccination. That 0 1000 2000 3000 4000 5000
is, when h(t) is negative, the input of susceptibles into the time
system is reduced. Since it will be designed to be adaptive FIG. 1. This is an uncontrolled time series of the fraction of
stochastic control, h(t) will also depend on the state vari- infectives I for the MSI model under random forcing in Eqs. (4) and
ables. (5). The parameters are given in the text. Inset: Note the small (SA)

For realistic childhood disease parameters chosen here, period 2 and large (LA) period 3 amplitude oscillations of the un-
theoretical [20] and numerical analysis [17] show that for derlying bistable deterministic system. No chaos is present when
almost all cases, the infective and exposed population follow 77(t)=0, and the system only exhibits periodic SA or LA
each other in time to first order, leading to a reduction which oscillations.
describes a modified SI model (MSI), given by

dS(t) ther phenomenon could not create on their own.
dt- [I + h(t)] - AS(t) - /3(t)I(t)S(t), Notice that in the absence of any stochastic fluctuations

[ (t) = 0], the system will settle down to one of two periodic
Sa(4) solutions. The two stable solutions are plotted in the Fig. I

dt- f3(t)I(t)S(t) - (,u + a)I(t). inset. The period 2 cycle has a small amplitude (SA) while
d +y/ the period 3 cycle is of large amplitude (LA). However, as

seen from the time series in the figure, outbreaks, which
The parameters used for measles data [20] are given by A occur due to stochastic fluctuations, may have enhanced am-=0.02, a= 1 /0.0279, y,= 1 /0.01,/3o= 1575, and 6=0.095, and plitudes by almost an order of magnitude over the period 3
are fixed throughout the paper. Here, the parameter h(t) is a pleb
time-dependent vaccine control whose value we will calcu- cycle.lateadativly, nd epeds n th phse paceloctio of Although the system is stochastic, its dynamics may be
late adaptively, and depends on the phase space location of quantified in terms of Lyapunov exponents by spatial inte-
(S(t) ,I(t)). gration against the invariant density [22]. For the parameters

Following the discretized stochastic model in Eq. (1), we used to generate the time series in Fig. 1, we compute the
strobe the system with period-1 to create a Poincar6 map. Lyapunov exponents, and find them to be k1 =0.1638 and
Without loss of generality, we define a discrete stochastic X2=-0.4853. These values, together with the evidence of
model for the purposes of this paper [21]. Using a discrete nearly intersecting stable and unstable manifolds [23], indi-
stochastic map approach will allow us to make careful and cate a completed horseshoe dynamics under the influence of
accurate interpretations in terms of the (S(t),I(t)) variables, the noise, described as stochastic chaos [8,15]. However, the
as well as to examine the interaction of the dynamics and completed horseshoe dynamics, indicative of chaos in deter-
control with the underlying topology of the system. We con- ministic systems, is a geometric way of thinking about the
sider the uncontrolled stochastic system (h=0) as a two- interaction of noise and the underlying manifold structure of
dimensional map F of a region D into itself the deterministic part. The chaotic-looking dynamics are the

(SI)(t + 1) Flj(SJ)(t)] + 7(t), (5) result of mixing two stable attractors, while sampling un-
stable dynamics between them. The positive Lyapunov expo-

where 27 is a two-dimensional random variable having a nor- nent is therefore a way of measuring contributions to the
mal distribution given by v(x)=e-(xT -1x)/2/( 2 ,jy. 11 /2), with stochastic attractor of dynamics tracking near unstable mani-
%=diag (o-2), and we choose the standard deviation to be or folds. The fraction of time spent near the unstable manifolds,
=0.035. Since the two-dimensional deterministic system has as well as the transition probabilities of the dynamics switch-
an attractor with unequally-sized components, the noise am- ing from small to large amplitude behavior may be explained
plitude is scaled so that it is defined on the unit square. by taking a dynamic probabilistic approach, which we sketch
Because the standard deviation is based on the rescaled co- briefly. A full mathematical description is given in [15].
ordinates, it is small compared to the attractor size and is
smaller than the modulation component of the contact rate in 1lH. DISCRETE STOCHASTIC DYNAMICS AND
Eq. (4). A typical time series of the I component is shown in TRANSITION PROBABILITIES
Fig. 1. Notice the frequent aperiodic bursts, which for the
chosen parameters of the deterministic part of the model, Eq. If the noise is continuous, we can compute the evolution
(4), would not occur were it not for the random perturbations of the probability density using a Fokker-Planck approach
in Eq. (5); the deterministic and stochastic parts interact in a [24]. However, since the approach is one of discrete noise as
fundamental way to create complicated oscillations that ei- in Eq. (1), we evolve the densities discretely as well. That is,
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since the solution to the periodically driven is computed ev- region is solely due to the interaction of the noise and the
ery period to form the discrete map, we do the same with the global topology of the underlying deterministic dynamics.
density. IV. ACTIVE CONTROL OF STOCHASTIC

We assume the noise comes from a distribution, v(x). The OUTBREAKS
evolution of an initial probability density function (PDF),
p: D C R2 -- R, is defined by the stochastic Frobenius-Perron For deterministic systems, normal methods of vaccine
operator [15] PF: L (R2) -- L l (RE), given by control will reduce the input rate of susceptibles. The value

of h is usually computed so that at equilibrium (no seasonal
forcing, or 8=0), the net rate of production of infectives in

PF(p(x)) = i x-F(y)]p(y)dy. (6) one infectious period is less than unity. Under these condi-
tions, the disease will die out. However, control of small

The density is invariant if it is a fixed point of the operator. amplitude oscillations in the periodically driven case can be

This approach allows an approximation of the probabilistic done, but the disease will persist [26].

transitions of one part of phase space to another [15] as well In the stochastic case in the presence of periodic drives,
as the invariant density [25]. constant controls may make the problem worse. In Fig. 3, weas the pute in antdensition [25e fsee a direct comparison of constant vaccine control and no

To compute the transition probabilities from one region of control. Notice that although the mean level of outbreaks
phase space to another, we discretize the region D of phase appear to be reduced, the large fluctuations are greater than
space. Specifically, we assume there exists a cover of the without control. Therefore, constant vaccine control, al-
region D by disjoint sets Bi, though sometimes the only guide, may increase the size of

N large outbreaks. Therefore, it is natural to try to sample and
D = u Bi. (7) control discretelywhen considering stochastic outbreaks.

i=1 Vaccine activation using a variable h depends on finding
the regions where an outbreak is most likely upon the next

Defining the set of characteristic basis functions, iteration. These are points of the trajectory generated by Eq.

_11, xE Bi  (5) in the SA basin that precede iterates in the LA basin.
IA) = xB(x) (8) Although we compute conditional outbreaks from the spatial0, x Bi averages using the transition matrix, this is verified tempo-

allows one to generate finite dimensional projections of rally. Using an uncontrolled stochastic time series of 50 000

transport by computing the NX N matrix entries of a transi- iterates, and checking in which basin (SA or LA) each iterate

tion probability matrix [8,151 given by the equation is located, we show in Fig. 4 the most likely preoutbreak
regions. In comparison to Fig. 2, the spatial average predicts
similar transport regions of high conditional probability of

MiD PF((x)),j(x)dx. (9) the SA-LA transition.
We now define a bull's eye (BE) region to be an open

Therefore, Eq. (9) yields the probability of transporting mass connected neighborhood having high probability of transi-
from box Bi to B. tion from SA to LA outbreaks. The BE region, for a chosen

In considering the problem of predicting stochastic out- threshold, is clearly shown in red in Fig. 2. Distinguishing
breaks in the MSI model, we wish to compute the transition the center point xc, the BE region includes a neighborhood of
from a small amplitude (SA) oscillation to a large amplitude radius E that has a probability greater than a given threshold.
(LA) outbreak in a time series, such as the one generated in Notice that this is not the only region in which transition
Fig. 1. The inset shows the deterministic periodic orbits of occurs. Monitoring the BE region alone, therefore, is not
SA and LA, although noise may generate much larger out- sufficient for prediction of transitions [27]. However, it can
breaks than the deterministic LA orbit. Stochastic perturba- be used to determine other regions that are not obvious for
tions of SA in the inset are approximately the same ampli- transition to an outbreak.

tude, and therefore are used as a threshold to define large We can use the BE region as a first guess to monitor the

outbreaks. The mass flux entries generated by Eq. (9) can be dynamics. Let x0 n E be the current point of the observed
combined with the invariant density to generate the condi- dynamics, and xL a desired target point in the transport space
tional probability of transition from set Bi to B, given Bi . A close to the image of E, but in a region of lower transition
representation of the transition probability is depicted in Fig. probability. The relationship between the current point in the
2. Notice that the most active transport regions lie close to a trajectory x0 and the center of the bull's eye x. is xo=x,+y
stable manifold of an LA orbit (period 3 saddle) in the un- for some y. To move the image of x0 closer to the target point
derlying deterministic system. This stable manifold is the xL, we activate the control parameter h in Eq. (4). By Taylor
deterministic basin boundary which separates the SA (period expansion about F(xC, u) when h=0 and ignoring higher or-
2) and LA (period 3) regular orbits of Eq. (4), and the col- der terms, we solve
oring denotes the degree and location where this pseudobar- [xL - F(x, ) - axF(x, t,)y]'dF(x, )
rier is overcome due to noise. Notice that near each of the h = F(X ) 2 (10)
basin boundary saddles of period 3, transition to an outbreak
is likely. However, the highest transition region is not near assuming O9,F(xC, IL) 0 0. This control strategy is designed to
any saddle. Rather, the probability of an outbreak in this target a desired region of lower probability, given the iterates
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In(l) --- - -.

I I

-3.0 -2.7 -2.4 In(S)

FIG. 2. (Color) The GTM result of the conditional probability of transition from small amplitudes to large outbreaks using the same
parameters as in Fig. 1. The highest probability regions of transport (red) point to a bull's eye monitoring region for control. Overlaid are the
stable and unstable manifolds corresponding to the underlying deterministic model.

land in a region of high transition probability, of the success of this algorithm is shown in Fig. 5. On aver-
Now we apply control to suppress large amplitude out- age, perturbations are applied 25-30 % of the time. Notice

breaks. Focusing on points in a neighborhood of the BE re- the maximum amplitude in comparison to the uncontrolled
gion has the disadvantage that the values of I are already dynamics of Fig. 1. For this example, the Lyapunov expo-
fairly large. Therefore, we use the detection region of the nents are \ 1 =0.0794 and X2=-0.3764, where the maximum
neighborhood around the (deterministic) preimage of the exponent has been significantly decreased.
bull's eye, F-'(E,1x), shown as an ellipse in Fig. 4. Using
Eq. (10), the image of the ellipse, Ih, is found to be the figureV.DSU IO
eight shown in Fig. 4. We targeted a region in \h which is
close to the BE region but has a very low transition probabil- Stochastic bursting is present in many systems that are
ity. Our techniques successfully steer trajectories away from based on population dynamic modeling. In general, when
the bull's eye region towards SA behavior by using only such systems are subject to periodic forcing, there exist pa-
vaccine perturbations that control the flow of susceptibles rameter regions in which multiple attractors coexist. Typi-
about some mean value. cally, one of these attractors arises from periodically forced

One advantage of choosing the detection region to be the equilibrium, and therefore, is typically of small amplitude.
preimage of BE is for relatively low values for the number of On the other hand, the other attractors bifurcate from saddle
infected individuals (1), a prediction can be made about the node orbits, which tend to be of larger amplitude. Such
future increase and steps can be taken to avert these dynam- bistable systems can have a simple manifold structure, but
ics. The perturbations represent a vaccination program, tak- when considered in the presence of stochastic fluctuations,
ing the form of ju,,,=1.L[I +h(t)]. If h is negative, then more they may exhibit complex mixing between the bistable at-
vaccinations are required to reduce the rate of susceptible tractors, coupled with complicated looking transients be-
individuals being introduced into the population. An example tween the basins.
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FIG. 3. (a) An uncontrolled time series of infective fraction as a function of time. (b) Constant vaccine control to reduce the rate of input
of susceptibles.

By using the PDF flux, we are able to distinguish regions used in other chaos control schemes that are deterministic
in the small amplitude basin that are quite sensitive to sto- (i.e., [28,29]). To our knowledge, we are not aware of any
chastic effects. We use this information in a control algo- stochastic chaos control methods that account specifically for
rithm to prevent bursting dynamics (that is, to control sto- the emergent effects of stochastic perturbations.
chastic chaos). It monitors this sensitive region and adjusts
one physically relevant parameter to keep trajectories in the
SA basin. This idea of monitoring a loss region has been a) 0.01

In(1) -- -.- 0.008.

0.006-

0.004-

0.002

0 1000 2000 3000 4000 5000
-12- ,b) time

16 ",'-0.01

8 -0.02
' ' '"' " '-0.03

-3.0 -2.7 -2.4 In(S) 0 1000 2000 3000 4000 5000
time

FIG. 4. Temporal average of those iterates leading to outbreaks
in the next iterate using the same parameters as in Fig. 1. Notice the FIG. 5. Stochastic control to suppress large outbreaks in the
agreement with the spatial average in Fig. 3. The ellipse bounds the MSI model. (a) Infectives with suppressed outbreaks due to control
detection region. The figure eight curve is the image of the ellipse in the influx of infectives. (b) Perturbations h to the susceptible
with controlled targeting. input rate I in Eq. (4).
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0.14 trigger an earlier, but smaller, outbreak. To understand this,
we consider the MSI model, but transformed and scaled, so

0.12 that the steady state equilibrium in the absence of forcing is
now at the origin, and we examine the conservative system

0. 1 !in the absence of damping as well [30],

E x'(t) y,
_5 0.08- (11)
Qy'(t) = VX(1 +y).

0.06 In Eq. (11), x is a scaled susceptible, y is a scaled infec-
:0 tive, the equilibrium is at the origin, and the frequency v is a

0.04 function of the epidemiological parameters. Notice that since
S. the population is assumed to be constant, inthe absence of

0.02 any infectives [y=-l in Eq. (11)], the fraction of suscep-
tibles slowly increases. In addition, all oscillatory solutions

0 " -must lie on level curves to the Lyapunov function: V(x,y)
0 0.2 0.4 0.6 0.8 1 =x 2+2y-2 In (y+l).

% missed detections Now suppose we have a small amount of infectives im-
posed by a strong level of vaccine. Then the infectives will

FIG. 6. A plot showing optimized predictability. Plotted are the stay small for a long period of time, until enough suscep-
false alarm rates versus missed detections. tibles grow to cause an outbreak of very large amplitudes by

One concern with a probabilistic detection scheme is that coming in contact with a few infectives [31]. That is, an
it is dependent on the choice of the monitoring region used outbreak will not occur unless the susceptibles reach a criti-
for transition to an outbreak. Two issues with taking an ac- cal level in a long time scale while in the presence of a small
tual time series and using the monitoring scheme above is fraction of infectives. To be specific, suppose y=-I +ce,
that it may miss an outbreak that is there (missed detection), where c > 0 is constant. Then y'=xce. If x < 0, then the in-
or it may predict an outbreak that does not occur. These fectives decrease further, implying a much larger outbreak at
statistics depend heavily on the size of the monitoring one a later time. Therefore, if one increases the infectives, the
uses. To see this in Fig. 6, we change the radius around of the system fires sooner, with a smaller outbreak, since the infec-
center of the bull's eye and the radius around its preimage. tives are pushed further away from the invariant line y=-l.
Each dot plotted in Fig. 6 is for a different radius. The small- When the control h is adjusted so that it is positive, the effect
est radii are represented by the data points on the right. As is to cause an increase in the rate of infectives, thus reducing
we increase the radii, the data points move along the curve to the size of the outbreak.
the left. The false alarms are those outbreaks predicted by the Finally, although the vaccine control fluctuations do not
bull's eye, but do not occur. The missed detection are the decrease the mean incidence levels of infection, the control
bursts that occur but are not predicted by the maximum flux may be combined with tracking methods for epidemic con-
hypothesis. It is the percentage not detected. trol [26] to reduce the mean reproductive rate of infection

The choice we made for the detection region has solely below threshold to kill off the disease without causing un-
been guided by time series observations and PDF flux pre- wanted outbreaks during vaccination.
dictions. It has not been optimized for the minimum number
or size of perturbations. Because of the stochastic perturba- ACKNOWLEDGMENTS
tions added to the system, the control measures will not "trail
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We analyze the effects of stochastic perturbations in a physical example occurring as a higher-dimensional
dynamical system. The physical model is that of a class-B laser, which is perturbed stochastically with finite
noise. The effect of the noise perturbations on the dynamics is shown to change the qualitative nature of the
dynamics experimentally from a stochastic periodic attractor to one of chaoslike behavior, or noise-induced
chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius-Perron operator
[L. Billings et al., Phys. Rev. Lett. 88, 234101 (2002)] to a model of the experimental system. Our main result
is the identification of a global mechanism to induce chaoslike behavior by adding stochastic perturbations in
a realistic model system of an optics experiment. In quantifying the stochastic bifurcation, we have computed
a transition matrix describing the probability of transport from one region of phase space to another, which
approximates the stochastic Frobenius-Perron operator. This mechanism depends on both the standard devia-
tion of the noise and the global topology of the system. Our result pinpoints regions of stochastic transport
whereby topological deterministic dynamics subjected to sufficient noise results in noise-induced chaos in both
theory and experiment.

DOI: 10.1103/PhysRevE.70.026220 PACS number(s): 82.40.Bj, 02.50.-r, 42.55.-f, 02.40.Vh

I. INTRODUCTION point or a crisis of chaotic attractors that leave a chaotic
saddle present.

Noise-induced escape, which appears as a form of bifur- In driven deterministic systems, the existence of chaotic
cation in dynamical systems, is now documented in many invariant sets, such as chaotic saddles, can be proven by
areas of science and engineering [1]. It arises in stochastic examining the topology of intersecting manifolds [8]. As an
processes, which we consider to be a composition of deter- example, we cite the Melnikov method [9]. Although it has
ministic and time-dependent noisy systems. Detecting chaos been extended to stochastic systems [10], it is limited in
in noisy systems is still an issue of debate. Efforts have been application since it is a bifurcation result that is perturbed
inde nois rry ste is tia uefini of dete benitc from a global homoclinic or heteroclinic connection in a con-
made to carry over operational definitions of deterministic servative system. Therefore, in many cases, one must rely on
chaos to stochastic systems, such as proving the existence of algorithmic methods for the numerical computation of un-
a positive Lyapunov exponent [2] and exploring the interac- stable objects and their manifolds [11-13], with the hope that
tion of noise and a global bifurcation based on underlying one may extract transverse intersections. We also note that in
unstable structures, such as a chaotic saddle [3]. Many of the contrast to the hypothesis that noise-induced chaos is caused
underlying deterministic systems in these examples have pa- by a chaotic saddle excitation, a recent result shows that only
rameter regimes in which multiple attractors give rise to partially formed manifold intersections (in which no chaotic
noise-induced escape from one attractor to another. Such sys- saddle exists) may also be found to have a positive Lyapunov
tems may be analyzed globally using the Hamiltonian theory exponent [14].
of large fluctuations, or considering escape from attracting In this paper, we compare a bifurcation observed in a
potential wells along most probable exit paths [4] using the nonequilibrium stochastic class-B laser experiment to a cor-
theory of quasipotentials [5,6] or a variational formulation of responding model of the system. We include experimental
optimal escape paths [7]. It is well known that noise can results, as well as the theoretical explanation of the observa-
excite unstable chaotic structures while destroying regular tions. In particular, experiments support the claim that add-
periodic dynamics, but most studies consider noise-induced ing larger stochastic perturbations to the system results in
chaos occurring near a bifurcation, such as a saddle-node qualitatively different dynamics. Using the model, we pro-
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oscilloscope
... ---- C2FIG. 1. Experimental apparatus used/ Gra---g to perform our measurements. AOM,

ADC / Graingacousto-optic modulator; BS, beam split-
ter; PM, power meter; PD, photodetec-
tor; TG, trigger generator; ADC, analog-
to-digital converter; and PC, personal

Driver computer.

Waveform

generator

vide evidence that this is an example of a bifurcation to served. In fact, the transition is smooth statistically, evi-
noise-induced chaos by explicitly computing the probability denced by the smooth transition of a Lyapunov exponent
transport due to noise. In this way, the interaction of noise through zero, which may be due to the noise-induced un-
and the underlying topology is identified in the emergent stable dimension variability [21]. There is also a resemblance
dynamics. We present analytic methods that specifically to noise-induced switching between multiple attractors as de-
carry out the task of constructing the invariant density and scribed in [3], but evidence provided by the probability den-
transition probabilities in a rigorous manner to address the sity function supports the fact that trajectories spend as much
problem of this P-type stochastic bifurcation, as defined in time (if not more) near the partially formed heteroclinic
[15]. Since it is a global approach, it is an alternative to using tangle as the two periodic attractors. We also note that as
the Hamiltonian theory of large fluctuations, as described in previously reported in [6] and [3], both explosions and at-
[7,16] for autonomous systems, and in [17] for periodic sys- tractor switching are facilitated by fractal basin boundaries
tems. New tools were developed that are based on discrete and nonattracting chaotic sets.
approximations to the Frobenius-Perron operator with addi- The layout of the paper is as follows. In Sec. II, we de-
tive noise, defined as the stochastic Frobenius-Perron opera- scribe the experimental setup of a nonequilibrium stochastic
tor (SFPO) [18,19]. class-B laser. We illustrate the effects of noise on the dynam-

Using the SFPO, we identify the active regions of sto- ics of the intensity and show how the structure of the attrac-
chastic transport, or probability transitions, in the model. The tor changes. In Sec. III, we briefly review the laser model of
advantage of this method is that we can find the probability the experiment in a reduced form and show that it captures
density function (PDF) and maximal transport across bound- many of the features of the experiment. Section IV illustrates
aries in the absence of a priori knowledge of manifold struc- the effect of noise on the laser model and specifically shows
tures and without time averaging. From the SFPO method, how the maximal (or top) Lyapunov exponent depends
since one can directly compute the invariant density, spa- smoothly on the standard deviation as it transitions from sto-
tially averaged Lyapunov spectra may be computed if the chastic periodic behavior to stochastic chaos. The global
linear variation along an orbit is known. For stochastic sys- structure of the underlying topology and transport results are
tems that are sufficiently ergodic, spatial and temporal aver- presented in Sec. V, and the discussion is presented in Sec.
ages of the Lyapunov spectra are equal, and therefore, a posi- VI.
tive Lyapunov exponent averaged spatially is a possible
indicator of stochastic, or noise-induced, chaos [15]. II. AN ACOUSTICALLY OPTICAL MODULATED LASER

To contrast our work from previous theories, we note that EXPERIMENT WITH NOISE
the bifurcation is far from parameters that would lead to a To examine the effects of external noise in an experiment,
natural bifurcation to chaos, and large noise levels are in- Tonexan acouscts otical moise a expem .cluded. Many studies in this field have relied on exmnn we consider an acoustically optical modulated laser system.

d examining The experimental apparatus is shown in Fig. 1. It consists of
small noise limits, such as quasipotential theory [6] and op- a single-mode C 2 laser with an intracavity acousto-optic
timal path theory [4], although this work has more recently modulator allowing modulation of the cavity losses. The op-
been extended to the regime of finite noise intensity [20]. tic al lwi ng and the altansss. ceffi-
Underlying unstable fractal structures and noise-induced ba- al cavity is 1.30 m long and the total transmission coefi-
sin escape times have also been examined from quasipoten-
tial theory [6] for simple maps. The basin boundary in the can be expressed as follows:

system we study is a simple structure; i.e., it is nonfractal k(t) =k(l + a sin2{B0[1 +f(t)]}), (1)
due to the lack of intersecting stable and unstable manifolds.
In fact, only the forward crossings of a heteroclinic tangle where k=cT/L, c is the speed of light in a vacuum, L is the
could be identified, and no nonattracting chaotic sets are cavity length, a=(l -27)/2T, B0 is a bias, and f(t) is the
found to exist. The maximum Lyapunov exponent was cal- modulation signal,
culated to increase smoothly through zero at the transition.
Although both smooth and discontinuous onset are attributed At) =/f sin(2irvt) + (t), (2)
to noise-induced chaos, the transition, which resembles a with v= 100 kHz and the modulation amplitude /3. The ran-
noise-induced attractor explosion described in [6], is not ob- dom variable 17 is considered to be normally distributed with
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1400 No0002 trum is slightly broadened around the corresponding fre-
quency. In the right panel, considerably more noise causes a
qualitative change in the attractor. The periodic orbit is still

1000 located in the darkest regions of the graphs, but notice how
there is significant sampling to other parts of the phase space

X not previously sampled at lower noise amplitudes. To under-

600- stand the mechanism resulting in the stochastic bifurcation,
we consider an accurate model of the experimental process.

200 0 100 10 Il. AN AOM LASER MODEL
Xn In [23], a multifrequency phase control on a two-level,

two-dimensional CO 2 laser model produced both experimen-
2000 - Noise=0.01 2 tal and numerical evidence that it was able to preserve peri-

odic behavior within a chaotic window as well as to reexcite

1500 chaotic behavior when it is destroyed by a crisis. In the
model used, only intensity and population inversion were

7considered. To retain fidelity between theory and experiment,
" 100- a more realistic four-level model of a CO 2 laser, which in-

corporated intensity, two resonant population levels, and two
coupled rotational manifolds, was used in [24]. Analysis

500 showed that an approximate reduction to three state variables
. . . . could be made by examining differences in the resonant and

(b) 500 1000 1500 2000 rotational population levels while still retaining many of the
xn global features of the bifurcations. Therefore, we begin our

study of the scaled three-dimensional model in a stochastic
FIG. 2. Contour plots of the embedded intensity data (arbitrary version, where noise is added to the intensity equation. The

units) under perturbations of 77. Darker shades indicate regions vis- variables have already been scaled to be dimensionless [24].
ited with higher frequency. Small perturbations are used in the left The driven three-dimensional system has the advantages that
graph, which result in a noisy periodic orbit. Larger perturbations (i) it is higher dimensional than other models, and (ii) when
are used in the right graph. Notice how the emergent dynamics are sampled discretely at the drive frequency, its phase space can
fundamentally different from the smaller case. be visualized in three dimensions. The model equations are

mean zero and standard deviation a. The noisy signal f(t) is given by

provided by an arbitrary waveform generator (Tektronix A = k0 (Y2 - 1 - a sin2{B[1 +f(t)]}),
Mod. AWG420), which generates both the sinusoidal signal
and the random variable q using an independent internal A= - YIY2 - 2koeY1y 2 +Y3 + P,
Gaussian noise generator. Specifically, the noise is added pe-
riodically with the period of drive; i.e., Y =-y 2Y3 +zY2 +zP, (4)

17(t),= 17n t -n), n=l1,2., (3), n() and

and 8 is the Dirac delta function, and 77,, is now a discrete At) =A sin(wt) + 77(t), (5)

random variable, where 27(t) is discretely modeled as in Eq. (3) with period
It is known that by increasing the amplitude modulation, 21r/o, Yi is the natural logarithm of the intensity, Y2 is the

the system undergoes a sequence of subharmonic bifurca- main population difference, and Y3 is the difference in rota-
tions leading to chaos when 7=0 [22]. However, when noise tional levels. The fixed parameters are k0=32.97, a=4, B
is added to the system through the driver, the resulting dy- =0.21, &)=0.897 597 9, vi = 10.0 64 3 , P=0.082, y2= 1.0643,
namics is highly dependent on the noise amplitude. In Fig. 2, z= 10, and we vary A.
we see two examples of the output of the intensity plotted as We now describe the topology of Eqs. (4) and (5) without
a contour map of the embedded data for two values of the stochastic perturbations, i.e., 7(t) - 0. As shown in the bifur-
noise strength at the same value of the modulation amplitude cation diagram in Fig. 3, periodic orbits are represented as a
,8=0.360. Note that darker shades indicate regions visited function of A. As A is increased, a period-one attractor pro-
with higher frequency, and x, is the local maximum of the ceeds through a period-doubling bifurcation. Several saddle-
measured intensity. The left panel shows the case where node bifurcations for varying periodic orbits also occur,
small noise results in a two-piece attractor. The deterministic which will play a role when noise is turned on. We show the
attractor at this parameter value is periodic, located at the first saddle node, which is of period three in the figure.
dark regions in the middle of the pieces. We describe this Therefore at A =0.214, there exists an interval of bistability
behavior as a noisy periodic attractor since its power spec- IA, formed by period-four and period-three attractors. Asso-
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0.006 space is a unit box in three dimensions. With no noise, the
A=0.222 - - only observable behavior is asymptotically periodic trajecto-

0.005 \ -- ries converging to the period-three or period-four orbits. By
adding noise with increasing standard deviation, a random

0.004 trajectory changes from a noisy periodic orbit to chaoslike
00 deterministic behavior, visiting the two periodic orbit basins.
0.003- We remark that although in the original unscaled model,

- noise is added multiplicatively, it is approximately equivalent
0.002 to adding noise additively in the scaled model from Eq. (4).

A=0.14 - This is due to the fact that the intensity of the original model
0.001 - / is represented by the logarithm of the intensity in Eq. (4)

A=0.076 [26]. The noise source appears as a term of the form
0 sin2{B[l+A sin(wt)+77(t)]}. Taking a Taylor series expan-

sion with respect to 17 yields a noise term on the order of q,
0.05 0.10 0.15 0.20 0.25 which is independent of the state variables. Since the model

A is based on the natural logarithm of the intensity, a good

FIG. 3. (Color online) The bifurcation diagram for the laser approximation to the noise source is that the intensity equa-
tion has an additive noise term.

model as a function of the forcing amplitude. Plotted are branches

of both stable and unstable periodic orbits. The y axis is scaled n quantifying underlying complex determinism in sto-

intensity. The parameters are given in the text, chastic systems, it is inherently difficult to draw a clear line
to distinguish between complex oscillations due to signifi-
cant contributions from deterministic parts influenced by

ciated with the period-four attractor is an unstable period- noise and a large noise amplitude effect wherein complex
two saddle orbit (which is a flip saddle) and an unstable oscillations are primarily due to random Brownian diffusion.
period-one flip saddle orbit from the period-doubling bifur- One necessary, but not sufficient, condition for the existence
cation. The period-three attractor has an associated unstable of chaos is the calculation of positive Lyapunov exponents.
period-three regular saddle orbit arising from a saddle-node Lyapunov exponents measure the average rate of separation
bifurcation. We hypothesize that the multi-instability in this of neighboring initial points. Because we are adding pertur-
system when A E A has the topological structure needed to bations to this system discretely, we can find a finite-time
induce chaoslike behavior with additive stochastic perturba- numerical approximation for the Lyapunov exponents of the
tions. Since the bifurcation diagram contains only stability map using the linear variational equations of the original
and amplitude information, we explore the phase space system on the Poincar6 section. A positive Lyapunov expo-
through numerical simulation. (Rigorous analysis of the on- nent can identify chaotic behavior, but diffusion can yield a
set of the saddle-node bifurcation, which leads to bistable positive Lyapunov exponent as well [27]. Since chaos is also
regions, is similar to that done in [25] and will be presented associated with the underlying topology of the manifolds of
elsewhere.) the dynamical system, we examine the unstable structures in

the deterministic model and observe how they interact with

IV. STOCHASTIC DYNAMIC SIMULATIONS the stochastic source terms. Specifically, we would like to
identify the structures in the original phase space that noise

In keeping with the experimental setup, we model the can excite. For example, if noise causes a trajectory to visit a
stochastic system as a discrete dynamical system. Since the chaotic saddle, then there should be locally unstable contri-
experimental system was forced periodically with discrete butions to the Lyapunov spectrum. If enough of the unstable
noise using Eq. (3), we can add the perturbations at the same contributions are sampled, then the topology underlying the
period as that of the drive given by Eq. (5). Consider the chaotic saddle will be reflected in an increasing maximum
periodic sampling as discrete time events of a deterministic exponent.
system. We add the perturbations to initial conditions, similar In modeling the experiment, we consider additive stochas-
to adding noise to a discrete map. In general, we consider tic perturbations to the first component, setting c"2=" 3 =0.
stochastically perturbing a function F with additive noise: The phase space projection of the attractor changes qualita-
F: R3 --+ R3, xi--F(x) + 77, where 7 is an identically indepen- tively as a function of the standard deviation, as we saw
dently distributed random variable with normal distribution earlier. However, in Fig. 4, we show how the experiment and
and mean =0 applied once each iteration. Since we are most model both appear to change smoothly as the standard de-
interested in the situation where small noise amplitude can viation increased. This is reflected in the time-averaged
have major global consequences, we focus on the case where Lyapunov exponent computations. That is, as we increase o-1
the random part 2 is assumed to be independent of state x away from zero, the Lyapunov exponent increases and has a
and relatively small, so that the deterministic part F has pri- smooth transition from negative to positive values, as shown
mary influence. We add the perturbation to each component in Fig. 5. The crossing is near o-1 =0.064. As an example, we
independently and set the standard deviation I graph two trajectories to show the emergent dynamics in the
=diag(o01, 0o2,o-3) as a parameter. This standard deviation is three-dimensional phase space in Fig. 6. Setting a1=0.04,
relative to the normalized scaling of the almost-compact the largest Lyapunov exponent is negative, predicting noisy
space we consider. That is, each an is scaled as if the phase periodic behavior, as seen near the period-four orbit. Setting
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2.C 12
noise=O.0O2 1a=O.01

1.5

1.0
C 4

0.5
(a) 0.5 1.0 1.5 2.0 (b) '00 4 8 12

103 Yn 10"3 [exp(yl)]n

2.0 12
noise:0.O06 a=0.08

FIG. 4. The left graphs show intensity data

1.5 (arbitrary units) for increasing perturbations of 77.
The right graphs show similar results for the
model given by Eq. (4). Plotted are successive

1.0 local maxima of the intensity values. Notice that
4 in both cases, the attractors go from a stochasti-

cally perturbed period-four cycle, through a basin
0.5 hopping attractor, and then to bursting among

(c) several basins of attraction from the deterministic() 05 1.0 3 1.5 2.0 (d) o 4 8 12 case.
103 Yn 10 3 [exp(yl)]n

2.0 12
noise=0.010 a=0.12

1.5 .4

1.0
4

0.5
',.Wo.4

(e) 0.5 1.0 1.5 2.0 0(1) 0 4 8 12

103 Yn 10-3 [exp(y1 )]n

01 = 0.16, the largest Lyapunov exponent is positive, predict- setting a threshold for eyl at 0.009. This value was deter-
ing chaoslike behavior, mined by monitoring a trajectory with no noise. For each

More detail about the dynamics can be obtained by cal- standard deviation value, we count the number of points in a
culating the bursting statistics as a function of the standard random trajectory above the threshold and divide by the total
deviation of the noise. We approximate the burst rate by number of points. See Fig. 7 for the results using trajectories

700 000 points long. Notice how bursting occurs for
0.2 a>0.12. This value is different from the bifurcation value
5 0.1 predicted by the Lyapunov exponent. Therefore, we will in-

S... .. vestigate the stochastic dynamical system as the noise pa-0.
_. rameter a is varied.

Experimentally, we observe and show in Fig. 6 the
-0.1 changes that occur as a varies. There exists a two-piece

C noisy period-four attractor for o<0.064. Then, the two
pieces join into one attractor for 0.064< -< 0.12, which is
reflected by a positive Lyapunov exponent. Then, the trajec-

0 0.04 0.08 0.16 0.20 0.24 tories start to burst and visit the period three. This statistic is
STD (a) not noticeable until 0"=0.12. The amount of bursting is re-

flected in the burst rate. For 0.064 < 0< 0.12, the noise pro-
FIG. 5. The largest Lyapunov exponent as a function of the vides the transport for the trajectories to visit the stable

standard deviation of the noise. The transition from negative to period-four orbit, the unstable period-two orbit, and the un-
positive values is smooth, as predicted in [21]. stable period-one orbit. But for o"> 0.12, the trajectory visits
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V. PHASE-SPACE ANALYSIS OF STOCHASTIC
DYNAMICS

Understanding the interaction between noise and the de-
terministic topology requires that we examine the structure
of the stable and unstable manifolds of the relevant saddles

.................. "in the prechaotic regime. Locating stable and unstable mani-
. .folds can be done in several ways [11,12]. We use the box

algorithm from [13] and describe it here briefly. By picking a
11.4 . box containing the unstable saddle with part of its stable and

- . .unstable manifolds, we can determine initial conditions that
.will generate trajectories remaining in the box for a large1.2 wilgeeaeag

121.15 -number of iterations. We then eliminate any points converg-

(a) yt 1.1 -15 X) ing to an attractor. The initial conditions remaining in the
punctured box approximate the union of the stable mani-
folds, while the last point of the trajectory that remains in the

12.2 box approximates the unstable manifolds. This algorithm
.. was used to generate the stable and unstable manifolds in1 2 .. ... ... . . .........

.... .... .... ..

As shown in Fig. 8, the two-dimensional stable manifolds
of the period-three saddle orbit form the basin boundary be-

.tween the period-three basin and period-four basin. The one-
> 11.6 -. ............. o

dimensional unstable manifolds approach the period-four or-
11.4 . bit, intersecting the two-dimensional stable manifolds of the

period-two and period-one saddles. This forms a forward
1! . ......... -5 connection of a heteroclinic tangle in R3. There are no re-

1.2 verse connections or intersections of the stable manifolds of1.1 -15 the period-three saddle orbit, which would be necessary for
(b) y2(t) Yl(t) fully developed chaos.

FIG. 6. The left graph shows noisy periodic behavior generated By adding stochastic perturbations with a large enough

by the system when the standard deviation of the noise is crt  standard deviation, random trajectories frequently escape
=0.04. This is the behavior predicted by a negative Lyapunov ex- their asymptotic limit toward one of the attracting periodic
ponent. The right graph shows chaoslike behavior generated by the orbits and visit the other. In contrast to basin hopping, the
system when ol = 0.16. This is the behavior predicted by a positive trajectories spenda significant amount of time in between the
Lyapunov exponent in Fig. 5. two attractors, near the forward connections of the hetero-

clinic tangle. Essentially, short visits to the other basin act
like a reverse connection, completing the tangle and enabling

both the period-three and period-four attractors, and the chaoslike behavior. Therefore, the trajectory follows the cha-
manifolds in between them. See the right graph in Fig. 6 as oslike dynamics in the time spent in between the two attrac-

an example. We will now explore these dynamical changes tors. As the standard deviation of the noise is increased, this

by a transfer operator-based analysis, and we will compare reverse jump occurs more frequently and more time is spent

the results to the topology of the stable and unstable mani- in between the attractors. These events can be identified by
folds of the corresponding deterministic system and interpret bursting, and the chaoticlike behavior is captured by both the
the influence of the added noise. Lyapunov exponent and burst-rate statistics.

What we wish to identify here is where the noise facili-

tates the reverse jump in phase space and provide evidence
that the phenomenon is similar to a heteroclinic tangle. We

.N 0.1 begin by analyzing the time-series data. In Fig. 8, the point
0..8." before-the trajectory switches basins (defined in the noise-

-a 0.08" free case) is recorded. It is clear that the jumps occur fre-
0.06 quently in three regions near the unstable period-threea 0.04 saddles. To quantify these regions, we calculate the Galerkin
0.02 transport matrix.
0 .02- The Galerkin transport matrix can be used as a tool to

0 identify transport between the original basins as a function of
0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 the standard deviation of the noise added to the system [18].

STD () Let v(x) be the distribution of the random variable 7,

FIG. 7. The burst rate as a function of the standard deviation of v(x) = e-(xrX-Ix)/2/ (27r) 3det(Y,). (6)
the noise. Notice that the bursting increases from zero near o-
=0.12. As a spatial approximation, we use the SFPO in the form
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0 pl saddle
S, •A p2 saddle

2 70 p3 saddle FIG. 8. (Color online) The period-three basin
22 ,, ... .. * p3 node is denoted by stripes and the rest of the space is

* p4 node the period-four basin. The union of the stable12.1 - manifolds in the phase space is approximated by
12 j* * ' small dots in the period-four basin. This includes

12 f2 .' the stable manifolds for the period-one and

119 " AI : period-two orbits. The union of the unstable

1.8 . , manifolds is the solid curve with the period-three
. stars at the ends. The boundary between the

11.7 - .*, "_ F , "j , period-three and period-four basins is formed by

11.6- * the stable manifold of the period-three saddle
11. .*.* , ' (squares). Notice how the unstable manifolds of11... . the period-three saddle intersect the stable mani-

11.4- folds inside the period-four basin, forming the
Il/7 forward connections of the heteroclinic tangle.

11.3 - Superimposed is the time-series approximation of
S1.15,12 the flux from the period-four to the period-three11.2- 1.11 Y2 basin in large dots.

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4
Y1

partition. In theory, the case with no noise will result in a
PF,[p(x)] = K(x,y)p(y)dy, (7) block-diagonal matrix, reflecting dynamics in the disjoint ba-

J sins. Under stochastic perturbations, the GTM approximates

where the stochastic kernel describing the PDF of the noise three things: (i) the off-diagonal blocks indicate where the
perturbation is K(x,y)= v(x-F(y)). Assuming a nonzero ex- transport between basins occurs-this is the mass flux (or
temal noise is added in each component, Eq. (7) becomes simply flux), (ii) the dominant eigenvector having eigenvalue

unity approximates the PDF, and (iii) by weighting the mass
1 )TI-1(.)/ 2  flux by the PDF, we pinpoint regions in phase space that

PFJp(x)] = ( e- -XYP(y)dy. have the greatest probability of leakage into another basin-this is the area flux. See [19,18] for details.
(8) We show the GTM approximation of the PDF in Fig. 9.

Note that although it is possible to let any of the standard Since the noise distribution is assumed to be normal, it is
deviations tend to zero in the SFPO where the kernel limits expected that the PDF has nonzero entries everywhere in
to a delta function, it is more realistic to approximate the phase space. However, many of these values are sufficiently
zeros by very small values. This is due to the fact that thecontribu-zxers ent by ver ay y small values.nThisis toie. f c we tion due to the fact they are below machine error. Therefore,
experiment is always perturbed by small noise. Since we

require a finite dimension for computation, we cover the
phase space with N disjoint boxes B i and choose a set of 12.2 .
basis functions to be the family of characteristic functions 1212 ..... ..... .. . v ; .

0ix=Iifx eB i  (189) : 2 ?',% - ,
0 if x E. Bi.  11.6 .......! :r~ ..........~

In principle, any set of basis functions of L 2 can be used, but.1.

we use characteristic functions to help us locate spatial trans- 11.2 ........... .
port, as was motivated historically by Ulam's method. The 1.2-. .........
approximation of the Frobenius-Perron operator projects to a ,.. . . II
NX N matrix, called the Galerkin transport matrix (GTM), 1.- "6 -4

Y2 1.1 -12 -10 Ya

FIG. 9. An approximation by the GTM of the PDF when o1
(10) =0.16. The squares represent the stable period-four orbit. The

circles represent the stable period-three orbit. The darker shades
The GTM describes the mass flow from one box to another indicate regions with the highest probability. Notice that they occur
over one iteration. That is, the entry for Aid approximates the near the stable periodic orbits, but there is structure connecting
percentage of box i that iterates to box j under the stochastic these regions called the stochastic chaotic saddle. As o- increases,
map. Then partition the boxes according to their basin and orbits spend more time on the chaotic saddle, indicating the in-
reorder the GTM by similarity transformations to reflect that creased frequency of bursting dynamics.
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11b). The dashed line indicates the threshold used to determine a

12 10 811 regions where the trajectory is most likely to switch basins
(b) YJ are found by multiplying the mass flux by the associated

PDF value for that region of phase space. Notice the agree-
FIG. 10. (Color online) Approximation of the transport from the ment between the transport region predicted by the time se-

GTM when o-1=0.16. (a) shows regions of most active transport ries in Fig. 8 and the area flux from the period-four to the
from the period-three to the period-four basin in large dots. (b) period-three basin.
shows regions of most active transport from the period-four to the
period-three basin in large dots. Notice that these regions occur near
the period-three saddle orbit represented by the squares. In (a), the VI. DISCUSSION
union the stable manifolds is displayed in layered sheets and un-
stable manifolds form the one-dimensional curve with the period- Dynamics with noise is always present in experiments at
three points (stars) at the ends. They are approximated by the box least at some level. In many cases, noise is sufficiently small
algorithm from [13]. The stable manifolds of the period-three so that its role is ignorable with respect to the underlying
saddle form the basin boundary between the two basins. In (b), the determinism. However, even relatively low-amplitude noise
basin of the period-three orbit is represented by the small dots. Also may play a significant role in which the dynamics takes on a
shown in both (a) and (b) are the stable period-four orbit (stars), the qualitative change that is different from the deterministic
unstable period-two orbit (triangles), and the unstable period-one structure. In the physical example presented here, we have
(circle). examined an experiment where noise has been injected into a

modulated laser. The amplitude of the noise was adjusted,
we choose a numerical threshold of machine precision as a and the laser was seen to go from stochastically perturbed
lower bound and replace all smaller values to zero in the periodic behavior to one of stochastic-induced chaoslike dy-
PDF. Notice that as we add stochastic perturbations to the namics. Because discrete control of the random noise ampli-
system, the most frequently visited regions lie near the un- tude could be achieved, the system was therefore analyzable
stable manifolds of the period-two and period-one saddle by a discrete-map approach, thereby revealing explicitly the
orbits from the noiseless case. interaction of noise and the underlying deterministic topol-

We observe that as the standard deviation is increased, the ogy.
PDF spreads and crosses into the period-three basin, and In conjunction with the laser experiment, we have exam-
through the stable manifold of the period-three saddle. This ined a quantitative model with additive noise in the intensity.
is evidence that there is the topology for a trajectory to emu- Both exhibit similar bursting behavior, as shown in the time
late chaoslike behavior. We now will verify the fact that the series data in Fig. 11. Although the topology of the experi-
trajectory actually uses these regions for transport. This is mental dynamics is difficult to ascertain, the quantitative na-
supported by the area flux, which is shown in Fig. 10. The ture of the model does allow an in-depth view of the under-
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12 '.' in Fig. 12, we can see where the maximum probability of
transport from one basin to another occurs. Notice that much,0- of it takes place near the basin boundary saddle points. That

0, ,.is, the period-three saddle stable manifold, which forms the
. .basin boundary, intersects the regions of maximal probability

transport. The stochastic dynamics fluctuates until it comes
8 near the basin boundary, at which point it is attracted to the

• saddle point. Noise then takes on a dominant role, where the
intensity is either pushed across the basin boundary, or re-

a_ 6 / mains in the same basin. The unstable manifold then domi-
nates the noise, by pushing the dynamics further into the

" , respective basin.
.... " . Our model of the class-B laser includes more physics in

S * - .4 .. -the problem, which in turn, leads to a more interesting class
of dynamical behavior. Most laser models consist of just two

2 population levels, describing the change in the population
inversion and intensity. The advantage of such a model is

0 ....... .. . that it may be studied in the plane, having one-dimensional
* stable and unstable manifolds. The resulting stochastic analy-

10*  10 10 sis could be compared directly to manifolds that were built
from curve-following methods in the plane. In contrast, the
model considered here is based on a four-level model, which

FIG. 12. (Color online) The return map of the fixed points cor- agrees quantitatively with the experiment over a large range
responding to the periodic orbits and their projected manifolds. of values. The model requires two main levels and two rota-
(The x axis has been plotted logarithmically to show more detail.) tional levels, resulting in a five-dimensional system of differ-
The unstable manifolds form the dark solid curve in the middle, ential equations. Approximating the relaxation rates of the
while the stable manifolds are approximated by smaller points. In vibrational states by their average allows one to reduce the
addition, the projected regions of transport are overlaid in large model to the current three-dimensional driven case [24]. The
dots. Notice that the transport between the two basins predicted by main difference here is that the stable manifolds are no
the GTM in Sec. V lies close to the period-three saddles (triangles) longer one-dimensional. (The unstable manifolds are one-
on the stable manifold. The other periodic orbits are labeled as dimensional, however.) Here, two-dimensional stable mani-
follows: period two, stars; period four, squares; period one, large folds are pierced by one-dimensional unstable manifolds.
dot; period-three node, circles; period-three saddle, triangle. The Therefore, regions of transient behavior may wander over a
value of the standard deviation used was o-1=0.04. greater region of phase space in both the deterministic and

lying topology and its relation to noise. In the absence of stochastic models, offering a richer set of dynamical behav-
noise, the topology of the system was determined, and the ior than the two-level laser model.
structure of the stable and unstable manifolds was computed One of the main conclusions of the current stochastic
in a prechaotic regime. When noise is added, the structure of analysis is that maximal transport from one basin to another
the topology interacts with the stochastic fluctuations in such may not occur near the basin boundary saddles. Similar ex-
a way to induce chaoslike behavior, which is the emergent amples based on asymptotic properties of problems of escape
structure observed in both theory and experiment as shown where the phenomenon of saddle avoidance occurs can be
in Fig. 4. The stochastic dynamics is the union of local sto- found in [28,29]. We note that the methods used here not
chastic dynamics within each basin and the dynamics near a only agree with the previous local theories, but is an altema-
partially formed chaotic saddle. For sufficiently large noise tive to describe the global structure of the transport as well
amplitudes, local instability near the manifold structure con- [18].
tributes to the time- and space-averaged linear variation so In general, computing stable and unstable manifolds is a
that the Lyapunov exponent becomes positive, which we take difficult task, compounded here by the fact that the mani-
as criteria for stochastic bifurcation as defined in [15], and folds are of different dimensions. The technique used in this
exemplified in [2]. paper cannot grow the manifolds from a given saddle. There-

In tying together the dynamics from the model and ex- fore, the global analysis of the four-level laser system lacks
periment, we can project the phase portrait of the transport some of the precision of the two-level system. On the other
and manifold structure to a lower dimensional return map, as hand, the SFPO tool does not require the manifold construc-
we did in Sec. IV. In Fig. 12, we have depicted the fixed tions a priori. Rather, the transport requires a partition of the
points that correspond to the unstable periodic orbits and basins of attraction in the zero noise case. When noise is
their manifolds. Notice that because we used the box algo- added, the phase space is reconstructed in terms of transport
rithm of [13], the manifolds are not grown from a saddle, but across the referenced basin boundaries, and thus must con-
reflect the union of all such manifolds in the region we con- tain components of the basin manifolds, regardless of their
sidered. The stable manifold (in black) corresponds to the dimension.
basin boundary in the original phase space separating the In terms of model development, much work on noise had
bistable attractors in the deterministic case. In the projection been done on maps in the plane, or two-dimensional flows.
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In this paper, we have presented a stochastic experiment as that there exists a smooth transition from negative to positive
well as a quantitative model that simulates the stochastic Lyapunov exponents.
dynamics. The model is itself a reduction of a previously
more complicated model [24], but nonetheless, captures the ACKNOWLEDGMENTS
relevant features of the stochastic dynamics. In particular, it
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